
International Journal of Theoretical Ptlvsics, Vo/. 2 I, Nos. 3/4. 1982 

Quantum Mechanical Hamiltonian Models of 
Discrete Processes That Erase Their Own 
Histories: Application to Turing Machines 

Paul A. Benioff 

Dmtsion of Environmental Impact Studies, Argonne National Laborato~.', Argonne. 
Illinois 60439 

Receit:,ed May 6, 198l 

Work done before on the construction of quantum mechanical Hamiltonian 
models of Turing machines and general discrete processes is extended here to 
include processes which erase their own histories. The models consist of three 
phases: the forward process phase in which a map T is iterated and a history of 
iterations is generated, a copy phase, which is activated if and only if T reaches a 
fix point, and an erase phase, which erases the iteration history, undoes the 
iterations of T, and recovers the initial state except for the copy system. A ballast 
system is used to stop the evolution at the desired state. The general model so 
constructed is applied to Turing machines. The main changes are that the system 
undergoing the evolution corresponding to T iterations becomes three systems 
corresponding to the internal machine, the computation tape, and computation 
head. Also the copy phase becomes more complex since it is desired that this 
correspond also to a copying Turing machine, 

1. INTRODUCTION 

In an earlier paper (Benioff, 1980) microscopic quantum mechanical 
Hamiltonian models of Turing machines were constructed. Successive steps 
in the model were initiated by a system scattering from a sequence of fixed 
scattering centers where the phase shifts from successive one-dimensional 
scatterings turned on successive step interactions. The Coleman model (Bell, 
1975: Hepp, 1972), which makes the kinetic energy linear in the momentum 
and results in no wave packet spreading, was used for the moving system. 

This work was recently generalized (Benioff, 1981) to cover all discrete 
processes represented as iterations of a map T on a countably infinite set A. 
The Coleman approximation was removed and a locality requirement was 
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imposed. Some aspects of the relationship between the resulting models and 
the dilation theory of Foias and Sz. Nagy (Foias and Sz. Nagy, 1970) were 
discussed. 

In both papers the Hamiltonian evolution generates a history of the 
process on a recording system. However as Landauer and others have 
emphasized (Keyes and Landauer, 1970: Landauer and Woo, 1971, 
Landauer, 1976), making the process reversible by creating history tapes 
only delays the inevitable. The history tapes have to be erased sometime. 

Bennett (1973) has shown that one can associate to each Turing ma- 
chine a reversible Turing machine which erases its own history. In particu- 
lar, the machine calculates, and generates, a record of the calculation in the 
forward phase. If and when the machine terminates it copies the expression 
on the computation tape onto an extra copy tape. Then it proceeds to erase 
the record and recover the initial state before halting. Bermett discussed 
physical models of these machines which were thermodynamically reversible 
and thus dissipated arbitrarily little energy if they proceeded slowly enough. 

Here Bennett 's method will be applied as follows. For each discrete 
process T: A ~ A ( T c a n  be many-one), a quantum mechanical Hamiltonian 
model which is valid for 3n steps will be constructed. (n depends on 
adjustable system parameters and is otherwise arbitrary.) In the first phase 
the model carries out iterations of T on the A system and generates a history 
on the record system. If and only if the model arrives at a fix point of T in 
less than n iterations of T, the fix point is copied onto another system. Then 
the model enters the erase phase in which the record is erased as the T 
iterations on the A system are undone. If the system arrives at the initial 
state of the A system and a blank record system in less than 3n steps, then 
no further changes in the A system and the record system occur. 

The model constructions are then applied to Turing machines. This 
requires expanding the A system to an internal machine system, a tape 
system, and a tape head. However, it is not necessary to record a complete 
machine "instantaneous description" into a record system cell at each 
recording step. Also, the copying phase becomes more complex. 

The main reason for first considering models of abstract discrete 
processes is that they are relatively simple. Basic characteristics of the model 
are clearer and easier to see. Direct construction of quantum mechanical 
Hamiltonian models of Bennett 's machines is quite messy and one tends to 
lose important points in the details. Proceeding in this way also shows that 
the model construction is not limited to Turing machines. 

2. REVIEW O F  T U R I N G  M A C H I N E S  

It is worthwhile at this point to give a brief review of Turing machines 
(Bennett 1973; Davis, 1958). For more details the reader is referred to the 
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literature. The reason Turing machines are considered here is that they give 
a standard representation of digital computers. Thus, the results obtained 
here apply to all digital computers. 

A Turing machine consists of three parts, an internal system ~, an 
infinite tape '~, divided into cells at positions . . . .  1,0, + 1 . . - ,  and a 
tapehead j, which scans the cells one at a time. Each cell may be blank or it 
may contain any one of a finite number of symbols in S, the symbol 
alphabet. The tap expression is given by the sequence of symbols, blanks 
included, on the tape. Since one is concerned with expressions which 
contain only a finite number of nonblank symbols, the infinite sequences of 
blanks at both ends of the expression are often suppressed to give expres- 
sions of finite length, t~ can assume any one of a finite number of internal 
states. The set of such states can be different for different machines. 

The Turing machine begins with an initial expression on the tape and 
proceeds by a sequence of discrete steps modifying the tape expression as it 
proceeds. Under a fixed correspondence between symbol sequences and 
natural numbers, each Turing machine Q defines a function fQ on the 
natural numbers where f( 2 is undefined at m if Q, started with m on the tape 
never halts. If Q halts, the value fQ(m) is given by the final number on the 
tape. 

The basic operations of Turing machines are described as follows: The 
head j, at some position i, scans the i th cell of '~. Depending on the state of 

and the symbol scanned, the symbol is changed a n d / o r  i moves one cell 
to the right or to the left. The state of 12 can also change. These operations 
are represented by quintuples of the form l(s, s'o)m, where l and s represent 
the initial state of C and the symbol scanned by i. s' denotes the changed 
symbol in the cell (s =s '  is possible), o represents the shift of j where 
o = - 1, + 1,O denote, respectively, shift of j to the next cell on the left, or 
right, or no shift, m denotes the final state of 12. 

Each Turing machine is represented by a finite set of quintuples no two 
of which begin with the same first two symbols. From now on we let Q 
denote both a Turing machine and such a finite set of quintuples. The step 
succession is determined as follows: Let l and s denote the state of 12 and the 
~X symbol scanned. Then the next operation is given by the quintuple in Q of 
the form l(s,--)-. By the above definition, there is at most one such 
quintuple in Q. If no quintuple in Q begins with l and s [or there is one and 
it has the form l(s, s0)l], the process halts. 

The overall Turing machine state, or instantaneous description, can be 
represented by a triple (l, eo, j )  as an element of L•215 Z. Here L 
denotes the set of all states of 12, Z is the set of all integers or cell positions 
in ~:T, and (Sh) z is the set of all sequences q~: Z --, S h, where S h = SU {b} and 
b denotes a blank and ~ ( j ) r  for at most a finite number o f j  values. A 
triple (l, cO, j )  denotes the state of 12, the sequence of symbols (all blanks 
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included) on ~5, and the position of the scanned cell of ~,q-. Note that L is a 
sum over all machines of the states associated with each machine. Let 
ID = L • (SI,)F • Z. Then each Turing machine, Q, corresponds to a func- 
tion TO: ID ~ ID defined as follows: 

TQ( l(pj ) = (  l 'q / j ' )  (1) 

where l '~ ' j '  are given by that quintuple in Q which begins with / and q~(j). 
The quintuple can be represented by l(e~(j), s 'o )m. This implies that l' = m, 
j ' =  j + o, and ~ ' ( j ) = s '  and ~ ' ( k ) =  ~ (k )  for all k 4: j. If no quintuple in 
Q begins with l and Co(j), then 1 '= l, ,~ '= q>, and j ' =  j .  It is clear from the 
above that for each machine Q, there is exactly one transfer function TQ and 
that T 0 is many-one in general. The steps of Q correspond to iterations of 
TQ. Q halts at some (l, co, j )  if and only if (/, ~, j )  is a fixpoint of TQ. The 
set ID is countably infinite and represents the state space for all Turing 
machines. 

It is convenient to restrict Turing machines to a standard representa- 
tion of initial states and final states (Bennett, 1973). The process begins with 
t~ in a fixed initial state l i and with the tape head at position 0. The tape 
expression ~, is such that all nonblank symbols (if any) start at 4~i(1) and 
extend in the direction of increasing cell position. If the computat ion halts, 
it halts with the tape head at position 0, ~ in a fixed final state l/, and ~,/on 
5 ,  where epr( 1 ) is the first nonblank symbol on ~5 (if any are present). Also 4>, 
and ~a/are such that no blanks occur between nonblank symbols. The initial 
and final steps of the machine are given by the quintuples li(b, b + 1)1~ and 
l k l ( s , s  - 1)lf for each s in S. 

The number of t~ states attainable by any standard Turing machine, 
summed over all calculations, depends on the step number n and the 
number m of symbols in S h. Two states l i and l~ suffice for the first step. For 
any given state, lj there are at most m distinct quintuples in Q beginning 
with ! /and  ending with different ~ states. Iteration gives the result that after 
n steps have occurred, the number of distinct ~2 states attainable, summed 
over all calculations, is Y~5'_-~mJ + 1 = N,,. 

One further restricts standard machines Q so that, under a fixed 
numbering 1~, 12 . . . .  of the states in L, the t~ states attainable in the first n 
steps of any calculation lie in L " =  {1~,/2 . . . . .  Ix,,}U{c, d}.  The two states c 
and d are needed for the copy phase. 

In this paper, consideration is limited to models which describe the first 
n steps of any standard Turing machine computation. The set of overall 
Turing machine states of relevance for the first n steps is given by the finite 
set 1D,, = L" X(Sh){-,,.,,I • { -- n, n}. The interval { - n, n} occurs because 
starting from 0, the tape head can shift at most n cells in either direction in 
n steps, 
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3. THE BASIC M O D E L  

3.1. Model  Sys tems and State  Descriptions. The construct ion of quan- 
tum mechanical  Hami l ton ian  models  of abstract  discrete processes T on A 
will now be considered. The model includes the system ~:t' on which model 
opera t ions  corresponding to T will occur, a record system ~:~ which consists 
of  a one-dimensional  lattice of n record cell systems, and a recording head h 
which moves along ~'~ scanning the record cells. The model  is completed by 
addi t ion of a widely spaced lattice .~ of 3n scattering centers and a system ,0 
which moves along c~ scattering from each of the centers in turn. The  use of 
,o and c~ will be described later. Figure 1 illustrates the setup. Here. script 
letters will denote  either the systems or the quan tum systems in the model. 
It will be clear from context  which is meant.  

The complete  state description of el ~ is given in terms of a complete  set 
{ + , ] aEe l  ~} of quan tum states which are pairwise or thogonal  and normal-  
ized to 1 (an or thonormal  basis), qJ,~" is the quan tum system model equivalent 
of  the state a of c~ ~. For  each record cell system ri ,  an appropr ia te  
o r thonormal  basis is (q,,~,l).'E A/,}, where At ,  = A U{b} .  The blank symbol  b 
is needed since a blank record cell must be distinguished from all recorded 
A elements. The record system s is completely  described by an or thonormal  

~'Pt pl r / basis set {~y IT~A~:}. The model quan tum state ~ = |  
sponds  to the expression 7(1), 7(2) . . . . .  7 (n)  recorded into the record system 
where the i th cell is blank if "y ( i )=b .  the recording head system h is 
described in terms of an or thonormal  basis set {~b~'lk = 1 . . . . .  n}. The state 
~k~ corresponds to the head being at cell position k. 

The state of the ~.~1 ~ + ~:~ + h system which corresponds to el ~ in state a, 
expression "y recorded in the cells of s and h at posit ion k, '~'~v, is given as 
the tensor product  of the componen t  states or 

= ( 2 )  

The process is started with e~ + t'~ + t~ in an initial state of the form 
' t ' b  ~ given by equat ion (2). Here a is an arbi trary element of ct ~ and b 
denotes  the constant  blank sequence on s The  state "P, bl corresponds to et ~ 
in state a, all cells in ~ blank, and h at cell posit ion 1. 

The goal of the process is to construct  a Hami l ton ian  for the model  
system so that  under  the SchrOdinger equation, the overall system evolves so 
that  the ct ~ + ~l + ~ system proceeds through an iteration of three types of 
steps repeated over  and over. The first type of step records the state a of c~ " 
into the (blank) cell of s scanned by b. The second type carries out on c~ ~ the 
state change a ~ T ( a )  corresponding to the value of a in the record cell 
scanned by []. The third type of step shifts b to the next record cell on the 

right. 
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The desired evolution of the d' + 9~ + h system state is as follows: let 
V~, V 2, and V 3 denote operators for the first, second, and third types of 
steps, respectively. Then for times t such that 3m + j model steps have been 
completed, where j = 0 ,  1, or 2 and 3 m + j < ~ 3 n ,  the r + h  system 
state, q'obl(3m + j) ,  should be given by 

q'.b,(3m + j )  = ~( V3~V, )'"~t'.b , (3) 

where Wj=I  if j = 0 .  V I i f j = l ,  and V2V ~ if j = 2 .  Since the model is 
supposed to be valid for n T iteration steps only. the above holds for the first 
3n model steps only. 

It is necessary to construct three interaction operators H~. H 2, and H 3 
which satisfy 

Vj=exp[iKHj] (4) 

f o r j  = 1,2, 3. The interaction part of the overall system Hamiltonian will be 
constructed from H~, H 2, and H 3. Details of the mathematical definitions of 
V,, and Hj are given in the next section. It may be omitted at first reading. 

3.2. Model Operators. The record step operator V~ is given by 

= ~ p,~|  | (5) Vl ~ a ~ a k 

a C .,I k = I 

Here P,~" and P~' are the projection operators for finding c't ~ in state + f  and [~ 
in state q,~', respectively. U,~ is the unitary operator which exchanges the/< th 
component states, <it and ~b,~ r, only in < t .  That is, U,'~+,~ ~ = f~!  where 
Y = 7 ' u n l e s s y ( k ) = a o r b .  In this c a s e y ' ( k ) = a i f y ( k ) = b a n d y ' ( k ) = b  
if y(k ) =  a and y ( j )  = "y'(j) for a l l j  4- k. Note that since U~ is an exchange 
operator (U~{)2 = 1. 

It is clear from the above definition that V I acting on any state of the 
form 't',~,k, Eq. (2), where y ( k ) =  b, records a into the kth cell of 7. In this 
case Vl't',,rk = q'-v'~' where y ' ( k ) =  a and 7 ( j )  = y ' ( j )  at a l l j  :#: k. Note that 
V t acting on a state of the form 't',,v~ where y(k)  = a is an erasing operator. 
This will be of use later on. Also, V I does not change "t',v a if y (k ) : # b ,  a. 

The T iterate operator V 2 is given by 

#l 

V~ ~ ~ ~; ,:~ t, (6) = U,, | | 
~ . I t ,  k = I 
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Here p~:] is the projection opera tor  for finding t~ in the state +r with 
7 ( k ) = y  and 7 ( j )  arbi t rary for j v S k  (i.e., the projection opera tor  for 
finding y in cell k of t~ ). P2' is as defined above. U ~' is the opera tor  which V 

exchanges the states ~,~.~ and +~l ~.1 and leaves all other states in the basis set 
{+,~"]aE A} alone. U~!~" is the identity if either y = b or T ( y ) =  v. For  each y, 
U,Y" is unitary and (U,! ~')2= 1. 

I.~, acting on any state of the form 't',,r~ where 7(k ) = a, iterates T on 
c~'. That  is. in this case, it converts 't',,rk to the state 't'.r~,,)y ~. However,  V, 
acting on the state q'r~,~rrk with 7 ( k ) =  a, reverses the T iteration convert ing 
the state to 't',~.~k. V 2 does not change 't',,~,, if a 4- 7 (k)  and T(7(k))=/=a. 

The head shift operator  V 3 is given by 

n 

k I 

Here P~a is the projection operator  for all states % such that 7(k ) :/: b and 
7 ( J )  = b for a l l j  > k. That  is, P2a projects out all record states in which cell 
k is the last (in the direction of increasing k)  nonblank cell. P~ is the 
projection opera tor  for the constant  blank sequence [ 7 ( J ) -  b for all j ]  and 
the l 's denote identity operators.  Uht'+ 1 is the operator  which exchanges the 
states q~ and +~,'+ 1 m o d u l o - a n d  leaves all other states in the basis set alone. 

= - +I' For  each k, U~I', i is unitary M o d u l o - m e a n s  that if k n then +~'+1- �9 
)2 and (U~t'+l = 1. 

V s, acting on any state of the form 't',r~, where 7(k ) v + b, changes it to 
't'uvk~ i modulo - - .  That  is, it shifts t~ one record cell to the right (Fig. 1). 
However  V3, acting on any state of the form q',vk where 7 ( k ) = b  and 
y ( k - 1 ) # : b  ( k - l = n  if k = l )  converts the state to q',,v~ i. That  is, it 
shifts h one record cell to the left. V 3 does not change 4g,r~ if 7 and k do not 
have the relationship given above. 

As defined the three-step operators  Vt, V 2, V 3 are unitary. They are also 
exchange operators  and self adjoint  as (V j)2 = 1 for j = 1,2, 3. The terms in 
the sums over a, k, and y in equations (5)-(7)  are all pairwise or thogonal  
(also P ~ P ~  =0) .  In fact V I, V 2, and V 3 were carefully constructed to make 
this condit ion hold. This is the main reason the recording head system is 
present  and for the presence of the P2a opera tor  in equat ion (7), also without 
it Vt would not be unitary. 

As a consequence of the pairwise orthogonali ty,  one can write 

H , =  ~ ~, *Pt~'|174 " ' a k  k ( 8 )  

aEA  k - I  

H ~ =  ~] ~ ta~' |174 t' (9) 
_ * * a  * a k  - - k  

a E . 4  k 1 
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and 

tl 

E (10) 
k = l  

where H ~ ,  H f ,  and H2'+, satisfy Uf = exp(iKH~, >, Us = exp<tKHak ), and 
U2~I = exp(iKH2+ 1). Equations (8)-(10)  show that H I, H 2, and H 3 can be 
explicitly given in terms of sums over tensor products  of simpler operators  
on the componen t  systems. Without  the pairwise or thogonal i ty  it is not clear 
how to express H~, H2, and H 3 in terms of simpler componen t  operators,  

There  are many  possible choices for the e lementary  interaction opera-  
tors H f ,  H's and H~'+ ~. Here these opera tors  will all be taken to have the 

generic form 

H = (Tr/K)(a~ ~ + a'P')  11) 

where a ~ and a ~ are constants.  For  j = 0 ,  1 

p / =  , t , J ) ( ~  / 12) 

where 

t 't, (13) 

For  H~, ", ' t '  1 = +~' and ' t '  2 = +~r if T ( a ) ~  a [H a = 0  if a = T(a)].  For  H~; k, 
'tq = + ~  and q',  = q,,~'. Thus H,; k acts on the system r k only of #ft. For 
Hi'+ i- '['i ~ f~' and *2 = f~!+i modulo  n. These choices of H ~+~, H~, k,''~ and 
H~!'+ i are discussed in more  detail elsewhere (Benioff, 1981). 

3.3. The  Scattering Systems o~ and {~. The reason for the presence of the 
scattering systems ~ and ~, is best seen by considering a simple example.  
Suppose one starts with a single s p i n - l / 2  system with the spin aligned along 
the positive z axis ( + ) ,  and wants to change the spin so it is aligned along 
the negative z axis ( - ) .  A simple way to do this is to impose a transverse 
magnet ic  field, of strength B, say, along the x axis. The appropr ia te  
Hami l ton ian  is Bo~ where o L = (~ is the spin flip operator .  

One way to proceed is to turn on the Hami l ton ian  Bo~ at t ime t = 0 
and turn it off  at t ime t=~r /2B  as exp(iBolt)=ioj  if t=Tr /2B and 
ot~b+ = ~b_. If one does not turn off  the Hami l ton ian  it will flip the spin 
back  from - to + and cont inue to cycle the spin state between ~+ and ~b_ 

with period v / 2  B. 
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The difficulty with the above is that the Hami l ton ian  is t ime dependent  
in that it must  be turned on and off  by an external agent. One can, however,  
construct  a t ime- independent  Hami l ton ian  by including into tile model a 
scat tering system 02 and a fixed scattering center  a as such an agent. The 
model  works in essence as follows. The Hami l ton ian  becomes  V(x)o~ where 
V(x) is the interact ion potential  between 02 and .q. The state of the sp in -1 /2  
system at t ime t is given by exp[ip(t)%]r where p(t) is the total 02- .q  
scat tering phase shift at t ime t. [The scat tering paramete rs  can be adjusted 
so that the dependence  of p(t) on them is small.] One adjusts the strength 
and range of V so that p ( m ) =  rr /2 and p(t)~ p(vo) for all t greater  than 
some convenient  t ime t o. Also p ( t ) = 0  for times for which the 02 wave 
packet  has not yet reached .q. 

For the above Hamil tonian ,  the s p i n - l / 2  system starts in state ~b+. As 
02 starts interact ing with t.1, p(t) increases and the s p i n - I / 2  system state 
becomes  a linear superposi t ion of f~  and ~b . At t ime t o and for till times 
thereafter,  the system state becomes ~b_ and remains ~ . 

This method is easily extended to a mult iple-step process by replace- 
ment  of ,q by a lattice ~-r of  fixed widely separa ted  scat tering centers, The 
co-particle scat tering from each center  in 9; turns on an interaction Hamil-  
tonian with a strength sufficient to comple te  one process step. The succes- 
sive scatterings turn on successive step interact ion opera tors  and move the 
object  system state through successive step changes [equation (3)] as 02 
progresses down the ,~~ lattice. 

In what  follows the above is applied to the process of interest where 
el ~ + <:~ + 11 is the object system. The scattering is limited to one-dimensional  
scat ter ing to keep the discussion simple. The next section gives some 
mathemat ica l  details of the above and can be omit ted  at first reading. 

3.4. The  Overall  Sys tem Evolution. The 02 + 9g + 0t ~ + ~'~ + h system 
Hami l ton i an  is given by H = H o + H '  where 

•2 
H ~  2m V'{ (14) 

and 

3#1 

H ' =  ~] V ( . v - x , ) H ,  mod 3 (15) 
/=1 

with H~, H 2, and H 3 given by equat ions (8)-(10).  (We set 31 mod  3 = 3  for 
all l.) Here H o is the free system Hami l ton ian  which describes the kinetic 
energy of 02, V(x - x / ) is the one-dimensional  interact ion between 02 and the 
j t h  center  (at posi t ion xj)  of ,4', a n d j  rood 3 d e n o t e s j  modulo  3. There  are 
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no terms in H 0 for the (:~', 0], and t~ systems as it is assumed here for 
simplicity that all states of c~l ' ,  ('~, and h have zero energy in the absence 
of H ' .  

The overall system state at the t ime t and o)-position x is given by 

,I.(x. t)= fexp~ .:~,/h~q,(k - ko)q'+k(x) dh- (16) 

where E~ = h2k 2/2m is the total system energy and ~ ( k  - k 0 ) denotes the ~o 
system m o m e n t u m  space wave packet  centered at k~ and with spread Ak. 
q'~ , ( x )  denotes the scattering solution for the Hamil tonian  of equations 
(14) and (15) with incoming plane waves expikx and for the appropr ia te  
initial state of  et ~ + ~:~ + h. The spacing, d, of adjacent  c, systems is such that 

interacts with at most  one system at any one time. That  is, d > A x  + 2 r  
where Ax is the ~0 packet  spread and r is the range of V about  any center 

of ~-~. 
Under  the eikonal approx imat ion  (Newton,  1966: Schiff, 1968) which 

requires that V(x) change little over a distance l / k ,  ~z+~(x) is given by 

(Benioff, I981) 

•  iD H iD (17} 

where 't',,b~ is the initial ct ~ +~:~ + h state. H t, H,. and H 3 are given by 
equat ions (8)-(10).  and n (x )  is the label of the ~--~ center which is either 
interacting with or has just  completed interacting with a0 system at x. D is 

given by 

D=777' f...,- v( x ) d.,- = ~,:~'7!  f ~- v( x ) d.,- ( ~ s ) 

as V(x) = 0 if Ixl > r .  m is the mass of w. The strength of Vis  adjusted so 
that D / k o = K .  Note  that exp[(iD/ko)Hj,lod3]=~mod3 �9 Details of the 
derivation are given elsewhere (Benioff, 1981). 

The final step in the derivation (made implicitly in earlier work) is the 

replacement  of equat ion (17) by 

W-o _ V(x ' - - - , , , , , , ) J - " ' ' , , , , ,M, ,d3  

• exp( iKH~,,c.~ I_ ,~ rood 3 ) ' ' '  exp( iKH I )'I',,bl (19) 
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This replacement is valid provided the momentum spread Ak is sufficiently 
narrow. In particular, writing exp( iDH I / k  ) = exp( iKH I ). exp(iDA kHl/kk{})  
~ - e x p ( i K H i ) . ( l + i K A k H l / k o + . . . )  one sees that the approximation is 
valid for 3n steps provided that 

k o 
3n < KAk  II H'II (20) 

where II m'll = maximum of Iq H I [I, II H2 II, II H 3 II. Use of equation (19) in (16) 
gives one the desired final model state which corresponds to equation (3). 

3.5. Conditions on System Parameters. Equation (20) gives one condi- 
tion which must be satisfied by the system parameters in order that the 
deviation of the phase shift D / k  from K be small. Another condition is that 
the w system wave packet does not spread appreciably during the evolution 
of 3n model steps. This condition gives (Benioff, 1981) 

V'2 k{}Ax 
3n < d A ~  (21) 

which expresses the fact that the wave packet must not spread enough to 
give interference in the scatterings from the different centers of cr 

Another requirement is that the eikonal approximation hold for the 3n 
potential scatterings, or 3nVo /E  k < 1. (A similar result is obtained for the 
related requirement that the transmission coefficient for the ~o system wave 
packet through 3n square well potentials is close to unity.) This inequality 
gives 

3n < r k o / K  (22) 

The above conditions show that the total number, 3n, of steps can be 
made as large as desired by making the potential range r sufficiently large 
and the momentum dispersion Ak sufficiently small. In particular, one can 
set r ~ Ax ~ 1 /Ak  and let r increase without limit. However, one must pay a 
price for such an increase in that as r a n d / o r  Ax increases so does the time 
required to carry out one step of the calculation. In particular, the time 
required to carry out one step of the calculation is equal to m d / h k  o where 
d > Ax +2r .  The total evolution time during which the system evolves in the 
desired fashion is also bounded by ~ r f m A x / ( h A k ) ,  equation (21), or 
m d / ( h A k  l[ H LI), equation (20), or 2mrd / (  hK ), equation (22). 

Finally, it is to be noted that the above limitations and requirements 
refer to the ~o system scatterings from the centers in ,~. No account has been 
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taken of limitations, if any, arising from the interactions between Cg, ~:~, and 
h given by H' .  

It is of interest to consider a specific case to see what the effect of 
the above limitations is on system parameters.  Let co be a 0.25 MeV proton 
( k o = 1 0  t2 cm l) with a momen tum spread A k = 1 0 5  cm -~. Let r =  
10 -5 cm, I I H I I = K = I ,  and d = 1 0  4 cm. Then the three conditions are 
satisfied with 3n = 106. This gives a total c:~ lattice length of 1 m. Each model 
step is carried out in 10-~3 sec. 

4. M O D E L S  WHICH ERASE THEIR OWN HISTORIES 

The previous development can be used to construct models which erase 
their own t',istories. Bennett 's construction (Bennett, 1973) for Turing ma- 
chines will be followed in that before the erasure phase starts, the state of  d' 
will be copied onto  another system. Also the erasure phase will consist of 
steps similar to those of the forward phase hut carried out in inverse order. 

The model will proceed as follows: If 7", started on a, either has no fix 
point  or takes more than n iterations to arrive at the fix point, then the 
model remains in the forward phase for all 3n steps. If a T fix point, 6, is 
arrived at in less than n iterations of 7", then the model process copies ff onto 
a copy system and starts the erasure phase. This phase should erase the 
history from ~:~ and thus return it to its initial blank state and also return ~:/' 
to its initial state and [3 to its initial position. 

It turns out that such an expanded model can be constructed from the 
one already discussed. The main point to note is that the operators V~-  V 3 
are exchange operators. In particular, as discussed in Section 3.2, V~ 
functions either as a recording or erasing operator,  V 2 as a T or a T inverse 
operator,  and V 3 as a right-shift or left-shift operator. Which mode these 
operators are in depends on the states on which they act. 

The model is expanded by addition of a copy system r to d " + ~:~_ + 13 
where the copy system is identical to a record cell system in ~,'~. The 
quan tum states ~,.~ of r for any y in A b correspond to v copied on r, Let P~ 
be a projection Operator which projects out the blank state ~ and define 

P ;  h by 1 - P~[. 
The model will be started with r initially in a blank state. Thus whether 

or not r is blank is used to determine which phase the model is in. To this 

end define interaction operators H i and/-/~ by 

H~ = HI| ~, + H3| 

and 

(23)  

H~ = H3| ~ + H,| (24)  
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It follows from equation (4) that if V~ and I4' 3 are defined by exp(iKH[) and 
exp(iKH~), respectively, then 

V[ = V,| + ~ |  h (25) 

and 

V ' =  V~| + VI| ~ h 
3 _ 

(26) 

For each a in cP let U. r be the "'copy operator." U." exchanges +,~ and +]i and 
leaves all other states in the r basis alone. Also, let H." satisfy U."= 
exp( iKH ,I ). 

In order to construct the copying step operator, one needs a projection 
operator onto state(s) of cg + {t + B which signifies when the copying is to 
be done. This is conveniently given by the projection operator  
v ~ p':~ p,:a| The appropriateness of this operator stems from the " k ~ a *  uk - I *  ak  - - k "  

fact that the same cg state label is recorded into adjacent record cells if and 
only if the label is a fix point of T. For any fix point /7 arrived at in the 
model process, the first time the record system will contain /7 in two 
adjacent cells is at the conclusion of a record step. Thus it is appropriate to 
modify H z to include the copying interaction by setting 

H2' = Hf + Hf (27) 

where [equation (9)] 

H~' = 

and 

tl 

Ha Prk - I "  uk --k 
y G  .4 h a G  .4 k =1 

(28) 

t l  

H~ Y,, Y~ ~'| ':~ p~|174 (29) = 1 P2k I ' , k  -k " ' ,  
a E A  k = l  

H~ is the part that acts in the forward or erase phase to carry out the 
model iterations or inverse iterations of T provided that the record cell 
scanned has a different symbol than the one adjacent on the left. The sum 
of y over A;, is necessary because after the first recording step, when the 
k = 1 term is active, k - 1 = n and cell n of the record is blank. 

Hg becomes active and copies the @~ state into r provided the record cell 
scanned by h and the one immediately to the left both have the same a value 
recorded. Note that H~ and Hg are orthogonal. 
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The ~o + c-~ + c~' + )Ot + I~ + r system Hamiltonian is given as H 0 + H "  
where H 0 is given as before by equation (14) and 

3rl 

2t"= Z V(x-x,)H; od, (30) 
]=1  

The overall system state is given as before by equations (16)-(19) except 
that H' replaces H everywhere in equations (17) and (19). The initial states 

--- @ r of interest for ct' + ~  + b + r have the form q'.b~b 't'~b~ ~b h with 't'.b ~ 
given by equation (2). 

It is left to the reader to follow through in detail the evolution given by 
H" to see that it has the desired behavior. Suffice it to note here that 
initially, only the H~ part of H~, the H~ part of H; ,  and the shift part H 3 of 
H~ are active and function jusl as desired in Section 3.2. 

H~ becomes active and copies the state of c~ into r if and only if the 
system arrives, at the end of a recording step, at a state "t'arkh where 8 is a 
fix point of T a n d  ~,(k)= y(k - 1)= 8. Hg converts the above state to 't',Trk a. 
The erase phase now starts with the H~ term in H~ first becoming active. 
Then the H 3 term in HI becomes active and is followed by H~ being active. 
This sequence is repeated over and over. The overall system state is such 
that H~ functions as a record erase operator, H 2 as a T-inverse operator and 
H~ as a left-shift operator. H f  is no longer active. 

The system proceeds in this manner through the erase phase until 3n 
steps have occurred or until it arrives at the state q'~b~a- e~, ~,fl, and h are 
now in their initial states. At this point the desired goal is that w should 
move past the remaining scattering centers (if any) without generating any 
changes in the c~' + ~ + [1 + r system state. 

However, this desired halting process is impossible in general for any 
isolated Hamiltonian system, This can be seen as follows: Any operator V 
which acts on an orthonormal basis {~p~lx~ X} according to Vq,~ = q%.~ 
for some F: X ~ X is unitary if and only if F is a bijection. Iterations of V 
correspond to iterations of F. 

The halting requirement is that if 2" corresponds to a desired final state 
then 2 must be a fix point of F. However there must also be some x 4 = 
such that F ( x ) - s  since there must be some iterative entry to the desired 
final state. But any F which satisfies the above is at least two-one which 

requires a nonunitary V. 
A{I,n} 

The arguments hold also for the case at hand in which X -~ A • -.b 
• { 1, n} and the iterations of V correspond to applying V~, [equation (25)], 
V~ = exp(iKH2), and ~'  [equation (26)], in turn over and over. At least one 
of the operators V[, ~ ,  or V~ must provide entry to the desired final state 
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which must be invariant  for all three operators .  But then the opera tor  which 
provides entry is not unitary.  

The solution to this d i lemma,  which is followed here, is to expand  the 
system by adding yet another  system ~:B which is comple te ly  described by an 
o r thonormal  basis {~bj"~[,/=0, 1 . . . . .  n}. (It  is convenient  to use the numbers  
1, 2 . . . . .  n to label the basis states.) 

The function of the ~:(~ system is to serve as a ballast  system which 
"soaks  up" all further system changes required by a Hami l ton ian  evolution 
once a desired final ct " + ~:~ + h + r state has been reached. To  this end let 
~,'i':' be selected as the initial state of ':t~. Also let Pc; ~ be the project ion 
opera to r  on "3(,.,~ which projects out +0". . . . . . .  Define P~0 by 1 - PO '~ = P,,o.':~ Let 
f : { O , n } ~ { O , n }  be a bijection such that f / ( 0 ) ~ 0  for 0 < l < ~ n  and H I. a 

self-adjoint  opera to r  such that 

(31) 

is satisfied for each l. 
In the expanded  model  it is desired to t ransfer  evolution to the ,:1~ 

system when d' + ~:~ + h has been returned to its initial state with ~:~l blank. 
Since d' +~:~ + h first enters the initial state in the erase phase  at the 
comple t ion  of a record cell erasure with H~ active, the next opera to r  to be 
active is H i . Thus  H i should be modif ied to contain the interact ions which 
t ransfer  the evolution to ~:B and keep it there. To  this end define the 
opera tors  h~, h~, and h 3 by 

h 1 = Hi| '~ + p~'| p ~  | l t'| , , |  '~ (32) 

h 2 = H 2 |  d (33) 

t ,L~ 
h 3 = H 3 |  d (34) 

These opera tors  along with the Hami l ton ian  defined by 

311 

H=14o+ V(x-x,)h,moa3 (35) 
. I = 1  

(3 / rood  3 = 3) represent  the final model.  No te  that f rom equations (10) and 
(23) the terms in h~ are or thogonal  so at most  one term is active dur ing any 

step. 
It is clear that  these interact ion opera tors  do what  is desired if one 

starts out with ~:B in the state +~.  The  opera to r  P~  | ~ guarantees  that  the 
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~:1 ~, system evolution does not begin until the tt ~, ':fl, l~, and r systems have 
reached the desired final states with ~d and t~ in their initial states, 9fl blank, 
and the appropriate T fix point recorded in r. The evolution of ~1~ starts and 
continues with changes occurring every third step. The changes correspond 
to the iteration of f on 0. Nothing further happens to the d', c:~., t3, and r 
systems since ~~ ~ = P0 +]'101 0. [Recall that H(0) 4: 0.] 

5. APPLICATION TO TURING MACHINES 

In order to apply the foregoing to Turing machines, one first notes that 
the system d ~ becomes the compound system t~ + ' 5  + j  and A becomes 
L X (S h)z X Z. However, since the model is valid for the first n steps of the 
computation, the models will be restricted to standard Turing machines as 
discussed in Section 2. Thus, ',q- will be restricted to have 2n + 1 cells from 
position - n to n and • will have a finite set L" of internal state labels. As 
discussed before, A then becomes the finite set ID, ,=L"X(Sh)  I-'''''l x 
{-,,,,,}. 

Complete orthonormal bases for t~, ~,q, and i consist of the respective 
sets of states { ~ [ I E L " } ,  {+~]qv~Sh{-"'"}}, and {Lkii[i~{--n,n}}. With 
these definitions, appropriate Turing machine states have the form q'l~i -- ~b~ 
|174 i where the triple (I,% i) is an instantaneous description of a 
machine. 

As noted in Section 2, to each Turing machine Q there corresponds a 
unique map TQ: ID --, ID defined by equation (1). Here the restriction TQ,, 
of TQ to ID,, is considered. The TQ,, so defined can be taken directly into the 
quantum mechanical models already given in the previous section. However, 
for Turing machines one need not record the complete machine description 
(/, % i) into the record cells of 0~ - - i t  is sufficient to record (l, ~,(i), i), (the 
state of t~, the symbol in the ~ cell scanned by j, and the position of j). 

To this end, one replaces the sum over a in the definition of H t 
[equation (8)] by a sum over 1, s, and k'  to get 

H, = ~, ~, ~, ~ p['| |174174 (36) 
l@ L n ) ' G S  h k ' -  - I I  k = l  

Here PI L, P,.'~,, and P,~, are projection operators for finding t~ in state l, y in 
the kth cell of 'S, and the head j at position k', respectively. ~'~ Hvrk,~. k is the 

ot] same as H,j k [equation (8)] with (lyk') replacing a. It is assumed that one 
records a triple (lyk') into each cell of ~fl. Corresponding to equation (5), 
one has 

tl ?l 

oemr,~ mr, i e~IT':~ | (37) V, : eiKH' = E E E E "1~'" 'k '~ 'k '~v ,  tvk',.~ --k 
I G  L "  . v E  St, k ' = -  n k = l  
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where ,:R _ . ,.~ U~lrk,).k--exp(IKH(irk,~.k). This result follows from the pair-wise 
or thogonal i ty  of the terms in the sums of equation (36). 

For  the machine computa t ion  step, the opera tor  H~ is defined similar 
to equat ion (9) by 

H? = 5 : 2  
I C  I_" . Y G S  k ' =  n k 1 

(3s) 

L~ 
Pc.*'~,a is the projection operator  for finding (/sk')  in cell k of c.~. Note  the s 
sum is over s instead of S h. 

C) is given by The opera tor  HI, ~, 

H k , =  ~ + Q, + (39) 

Let tile unique quintuple in Q which begins with & be given by 
l(s, s'o)m. Then the operators HI., O, H[~}),. and H iC) /,k' are defined to satisfy 
the following: exp( iKHs O) exchanges ~b[ and ~,c and leaves all other  states 

�9 . , ~ Q  
in the basis {~I:11r L"} alone, exp(zKHL~.) exchanges ~bi'~ and ~p%. only 
and leaves all other  states in the basis {~)ls~r for the k th  cell of 5 
alone. It has no effect on component  states of other cells in 5 .  Finally, 
exp(iKH/,~.) exchanges ~ .  and ~b~.a., + ~ (provided that / , "~  - , ,  or o ~ - 1  
and k '  :#: n or a ~ 1 ) and leaves other states in the basis alone. For  k '  = - n 
and o = - 1  or k ' =  n and o = + 1, ~bL,, and },I are exchanged and other 
basis states are left alone. As is the case with the other interaction operators.  
HI, O, Hs and H/, 0' are taken to have the generic form given in equations 
(11)-(13) with ,t', = ~ [ ,  ~q~ . and ~b~.. respectively, and 't'~ = ~,,L. ~,&, . ~b~.~,. 
respectively. Note  that just as is the case for the recording operator.  H;7} ). 
acts on only one system (the k ' th  component  system) which is part  of a 
larger system ( 5 ) .  

One sees from equation (39) that the component  interactions of H~ k, 
are uncorrelated. This has the result that 

exp( iKHI{)~. ) = e x p (  iKH,~ 0 ) |  . . . . .  r,n,"~Q, ~. )' |  iKH/,r ) 

when one uses the pairwise or thogonal i ty  of the terms in equation (38) to 
write 

exp ( iKH,  O) ~ ~ E e x p (  H Q ,." | _ _ ')/ ,  k 

l@ 1_" s E S  k ' - -  n k = 1  
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where 

t7 I1 

2 2 2 2 , 

I C l f  s ' ~ S  k ' = - n  k = l  

Finally, one notes that the shift operator H 3 given by equation (10) 
remains unchanged except for the replacement of V" by 1 e+'x+i. 

It will be recalled that the quantum mechanical models constructed 
here aply to standard Turing machines (Section 2). As a result, the initial 
and final system states are required to have the respective forms, 4,~|174 
+<i| ~ | and +~|174174 ~ | Here ~ , ( j )  and e p / ( j ) =  b for j ~  < 0 
and contain no blanks between nonblank symbols, a is a computation 
history sequence where a ( j )  ~ L"|  Sb| { - n, n } fo r j  = 1 . . . . .  k - 1 and a ( j )  
= b for k ~< j <  n. The above final state is reached at the end of some s tepj  
where 0 = j mod 3. 

For application of the general model constructions to Turing machines, 
the copy phase will be changed from a single step to satisfy the requirement 
(Bennett. 1973) that the copying also be carried out by a copying Turing 
machine. As a result, the model system will be expanded by adding a copy 
tape system ~, a copy head 6, and a sp in- l /2  system u. C ~ is a lattice of tape 
ce[l systems which duplicates ~ on (0. n} (the extension to ( - n, n} is not 
necessary). ~ is completely described by the basis set {~f l~  ~ (S~)/~ ,,1}. 8 is 
similar to h and is described by similar states {+j~ ] j = 0 . . . . .  n }. The system ~, 
is added to distinguish between the forward and copy phase and the erasure 
phase. Finally, two states c and d in L" which are not used in the forward 
phase are singled out as states of 12 for the copy phase. 

The expanded system starts with l~ + ~ + j + ~ + t~ in an appropriate 
standard initial state, ~ in a state qJ~' with all cells blank, 6 at position 0 (in 
state 4~0a), and ~, with spin up (+) .  If and when the computation is finished, 

�9 . r t the system enters the copying phase by chanDng +lr o +,.~. Copying is done 
by moving the head systems j and 6 in tandem down the respective tapes. 
When the copying is completed (signified by j reaching a blank cell), the 
spin of ~' is changed to down ( - )  and the system enters the erasure phase. 
However, in the first part of the erasure phase, the ~ + 5 + i + ( 3  + 8  
interaction must be modified so j and 6 are returned in tandem to their 
initial positions 0 without erasing r 

The construction given here also differs from that of Bennett (1973) in 
that the recording and ~1 shift steps continue to operate during the copy 
phase. This is not necessary since the copy machine is reversible (Bennett, 
1973), however, the interaction operators have a simpler form if these steps 
continue to operate as they do not have to be turned on and off. 
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The changes in the interaction operators which incorporate the above 
expansion are as follows: instead of H[ and H~ defined as in equations (23) 
and (24), one has 

and 

H~ = HI| Ir174 '' + H3| le+a| ~ + (41) 

H~ = Hs| lC'+a| + Ht|  Ie'+~| (42) 

where H I and H 3 are given by equations (36) and (10), respectively, and P2 
and P"  are the respective v system spin-up and spin-down projection 
operators. 

Most of the changes occur in the operator H 2. One now has 

: HI + &; 

where 

and 

k " =  - n  k = l  

(43) 

Hc%| �9 ~ , (llsk,), k~--k 
s E S k ' = - n  k = l  

(44) 

le+~+i| ,.~ p<)/bk.~.k]|174 e+8 e(;bk'~,k + '~ |  _ (45) 

Here, H Q is given by equation (38), Hc, is the interaction operator for  the 
of ~l/ and q~,., and e x p ( i K ~ _  ) exchanges g,. and ~_.  The exchange e ,-" 

change to the copy phase state ~b~ occurs if and only if the final 1~ state label 
If appears in a record cell scanned by ~1. The v system spin projection change 
occurs if and only if cb or tfb appears in a record cell scanned by h. The 
appearance of cb indicates that the copying is complete and l ib is included 
to take care of the possibility that the forward phase computation ends with 
all cells of ~3-blank. In this case, no copying is necessary. 

Furthermore, all terms in the k', and k sums of equation (45} are 
pairwise orthogonal as are all terms in the ~, s, k', and k sums of equations 
(38) and (44). In particular, for l = l terms in equation (38), HtQ~ = 0 for all 
s a n d  k'. Thus, at most one of the terms is active at any model step. 
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The copy interaction operator H~ is more complex as one must give 
here explicit expressions for the interaction operators for each type of step 
in the copy and initial erase phase. One has 

H~= H~ + H 2 + H~ + H 4 (46) 

where 

H~=  ~ ~ H~d|174 '" + p~ l |174 e+a+" 
- _ _ , ' s k ' ) , k  * ( d s k ' ) , k J  - - k  

s G S  k ' = - n  k = l  

tt tl 

- * ( c s k ' ) , k  - - k  * * s k ' V - - k ' ~ - - +  

s C S  k " =  - n  k = l  

k " + 1 * ( d s k ' ) .  k - - k  

,~ 'CS  k ' =  - n  k = l  

+1 i ~:~ L~ 8 ] |  k| |  k, + l  

(47) 

(48) 

(49) 

H~= E E 1r174 H~, t| p':~ &Pl'| * ( d s k ' ) , k ~ " k  
. v E S k ' =  n k = l  

+ l i |  ~ ~ 1e| , |  | i] | (50) (risk'). * * k ' -  

Here HI is the interaction operator for exchanging the copy phase states ~ 
and +,~ of 1~. The projection operator sum in the brackets is over the two 
states c and d being recorded (along with the position of i and the contents 
of the ff cell scanned by i) in the ~J~ cell scanned by h. 

H~ is the operator which copies the expression in ~:T into ~. In 
particular, it records the symbol s into the k' th ~:~ cell provided that 6 is at 
position k' and (csk') is in the ~ cell scanned by h. By the model 
construction, one can base the copying on what is in the record rather than 
on the actual ff state because at each H_~ copy step. the scanned record cell 
reflects the position of J and the contents of the g cell scanned by i. H,~, is 
the interaction operator such that exp(iKHs,,) exchanges s and b in the k' th 
cell only of ~? and leaves the k' th cell alone otherwise. All other cells of ~:' are 
also left alone. 

H~ is the operator that shifts both the j and 8 heads one step to the 
right and H 4 shifts the two heads one step to the left. 
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In understanding how H i operates, one first notes that H i' and H~ are 
orthogonal because the 15 state labels in the record cell projection operators 
in H2 r are different from c or d (which are the only labels appearing in H~). 
Also H~ and H-~' are orthogonal because the only ~ cell symbol appearing in 
the record cell projection operator is the blank while the corresponding s 
sums in H~ are over S and not S h. 

Within H~, one has, as before, that terms with different values of s, k', 
or k are orthogonal. However for each (s, k', k), the operator H ~ in H, ~ c d  

acts, along with the appropriate factors in H 2, H 3, and H~, to give the 
interaction operators H,.ea + H~:~,, H~a + H;,+, + H~,+ ,, and H e + H i + c d  k '  1 

H~, i, respectively. These remain in the exponent of exp(iKH~') after one 
brings down the projection operators [e.g., as in equation (40)]. At most, one 
of these interaction operators is active in any step since H 2, H 3, and H~ are 
pairwise orthogonal. 

Further details on H~ and in particular, the proof that H i, H',_ and H'3 
act as they are claimed to act, particularly during the copy phase and the 
first part of the erase phase, are left to the reader as they are straightfor- 
ward. 

The final model is obtained by addition of a ballast system ~.'13 just as in 
the general case. When and if the model arrives back at a state which is 
initial for ~, ~, i, ~Pt, [~, and 8, that is, 

|174 +0 <-, (51) 

where ~ corresponds to the initial ~,7 tape expression starting at 0, fl is the 
blank sequence, and ~ corresponds to the final 5 tape expression, then all 
further evolution is transferred to the t~ system. The final Turing machine 
model Hamiltonians are given by equation (32)-(35) with H i, H 2, and H~ 
given by equations (41)-(43). In equation (32) P~h, the projection operator 
for at least one cell of G being nonblank, replaces P~b. Since for these 
models the ballast system evolution is exactly the same as discussed in the 
last section, it will not be repeated here. 

6. DISCUSSION 

There are several points about the models which should be noted. The 
quantum mechanical Hamiltonian models are constructed so that they 
evolve as pure states in isolation from their surroundings. By well-known 
principles, the energy of the complete system is independent of time. Since 
the overall system state is pure, the overall system entropy is zero and 
remains zero throughout the 3n model steps. 
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However, in common with other systems, the model system state 
described here does degrade. To see this, consider increasing the number 3n 
of scattering centers in C while keeping the other system parameters fixed. 
For each time t and ~o position x, the overall system wave function given by 
equations (16) and (19) is a good approximation to the exact wave function 
provided that n(x) satisfies the limitations given by equations (20), (21), and 
(22) with n(x) replacing 3n in these equations. In particular, this means that 
the components of the exact wave function which are discarded in making 
the eikonal approximation and in deriving equation (17) from the resulting 
Lippman-Schwinger equation are small. Similarly, the components dis- 
carded by replacing the more exact equation (17) by the less exact equation 
(19) are small. 

Even though these undesirable components are small, they slowly 
increase with increasing time and step number. For times and step numbers 
which do not satisfy the limitations given by equations (20)-(22), these 
components may not be small compared to the desired state. 

It is clear then that as the exact state vector evolves, the amplitude of 
the undesired components increases and that of the desired component 
decreases. Furthermore, the undesired components do not describe the 
desired ordered and completed development of each step in the modeled 
process. It is in this sense that one can speak of the state vector degrading. 

Of course, the degradation is slow. As noted in the example, neglecting 
limitations on the interactions between the ~, ~ ,  h, r, and ~ systems, the 
model describes 10 6 model steps taking place in 10 -v sec before degradation 
becomes appreciable. Furthermore, the degradation can be slowed down by 
changing the system parameters so that the model is good for more than l 0  6 

steps, The price one pays for this is that the time taken per step must 
increase with the result that the model step evolution slows down. 

It is also true that, contrary to what was implied in earlier work 
(Benioff, 1980, 1981), energy is dissipated within the overall system. In 
particular, as amplitudes of undesired components, which represent evolu- 
tion in undesired directions, increase, so does the energy associated with 
these components. Since the total energy is fixed, the energy dissipates from 
the desired component into the undesired ones. (There is no dissipation to 
external sinks as the overall system is isolated.) 

As an example, one can consider the effect of approximating equation 
(17) by equation (19). Use of the more exact equation (17) shows undesir- 
able components growing in due to deviations from K of the exponent 
coefficient D/k. In particular, one can show that for equation (17), the 
energy dissipation increases linearly with the step number and, for the 
Hamiltonians of the form used here, equations (11)-(13), the energy dissipa- 
tion per step is about equal to [h2(Ak)Z/2m] ('n'2/4) where (Ak) 2 is the 



200 Benioff 

dispersion of q~ (k -  ko) in equation (16). No such dissipation occurs if the 
more approximate equation (19) is used. 

The description of the various systems such as el ~, or f ,  ~:7 i and ~ ,  13, 
and (:' or r was given in the abstract. If desired, the tape heads can be 
represented as spinless particles on a lattice and the other systems can be 
represented as lattices of s p i n - l / 2  systems. These representations require 
one -one  maps from the corresponding states to the set of 0-1 sequences, 
where 0 and 1 correspond to spin up and spin down, respectively. 

For example, ~ can be a finite one-dimensional lattice of length In 2(N,) 
and ',7 could be a two-dimensional lattice of length 2n - 1 in one dimension 
(each unit represents a tape cell) and of length ln2(m ) in the other 
dimension where m = n u m b e r  of symbols in S h. ~:~ and ~ can also be 
represented as finite two-dimensional lattices where the degrees of freedom 
in one dimension refer to the cell positions, and in the other dimension, they 
refer to the distinct symbols to be recorded. Since the number  (2n + 1)raN,, 
of triples in L"| - n, n} is finite, each record cell could be a lattice of 
length ln2[(2n + l)mNr]. 

Another interesting point concerns the existence of universal Turing 
machines, i.e., those which mimic any Turing machine. The fact that such 
machines exist means that there exists an interaction operator H 2, defined 
by equation (38), such that one fixed operator H i defined by equations 
(43)-(50) is sufficient to model all Turing machines. The differences be- 
tween different machines, instead of being reflected as differences between 
model Hamiltonians, is thus transferred to differences between initial states, 
i.e., what is on the tape L~. 

In the model constructed here, if the process reaches a fix point in a 
small enough number  of steps then at the end of 3n steps the object system 
d' + ~:~ + [~ (or ff + ~ + j + ~:~ + h in the case of Turing machines) is back in 
its initial state. However, the ballast system ~:(~ is not. In order to restore the 
ballast system to its initial state one must dissipate energy in the amount of 
kTln2n. This follows from the fact that for the model considered here '!~ 
must have at least n distinct slates. 

This dissipation is an example of the fact noted by Landauer and 
others (Keyes and Landauer, 1970; Landauer and Woo, 1971: Landauer, 
1976) that whenever one destroys information, one dissipates kT  energy per 
bit destroyed. However, this energy expenditure does not take place during 
the process, It occurs at the end of the process if and only if one restores ':~ 
to its initial state. Note that it is proportional to ln2n and not to n. 

Finally, it is to be stressed that what has been shown here is the 
mathematical existence of quantum mechanical Hamiltonian models of 
systems (including Turing machines) that erase their own histories. Whether 
or not such models are actually physically constructible is an open question. 
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In regard to this question, one notes that in common with many other 
quantum mechanical models, the models constructed here describe isolated 
systems. This represents an idealized state of affairs which is only realized 
approximately. Also, the models constructed here are very sensitive to any 
external influences. The reason is that all components of the object system 
are noninteracting during times the step interactions are not active. The 
object system energy at the end of each step is independent of the step 
number and equals zero. 

This open question is closely related to a more basic one. Which 
Hamiltonian evolutions are constructible in the sense that there is a well- 
defined laboratory procedure for arranging systems and external fields so 
that the systems time evolution is given by the Hamiltonian under consider- 
ation? Simple cardinality arguments suggest that most Hamiltonians are not 
physically constructible just as most quantum mechanical observables are 
not measureable. In this case, are the Turing machine Hamiltonians physi- 
cally constructible or not? It is likely that answers to questions such as these 
will have to await more work. 
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